The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 216556.
Contributors

<table>
<thead>
<tr>
<th>Partner</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLAB</td>
<td>Primož Hadalin, Miha Stopar</td>
</tr>
</tbody>
</table>

Notices

The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials subject to any liability which is mandatory due to applicable law. Copyright 2009 by the SLA@SOI consortium.

* Other names and brands may be claimed as the property of others.

This work is licensed under a Creative Commons Attribution 3.0 License [1].
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>24 May 2011</td>
<td>Primož Hadalin</td>
<td>Draft</td>
</tr>
<tr>
<td>0.2</td>
<td>23 June 2011</td>
<td>Miha Stopar</td>
<td>Minor changes, document skeleton is ready</td>
</tr>
<tr>
<td>0.3</td>
<td>19 July 2011</td>
<td>Miha Stopar</td>
<td>Some sections added (Studio...)</td>
</tr>
<tr>
<td>1.0</td>
<td>21 July 2011</td>
<td>Miha Stopar</td>
<td>Final corrections</td>
</tr>
</tbody>
</table>
Executive Summary

This document provides technical information on how the SLA@SOI Open Reference Demonstrator can be installed and started in order to demonstrate the SLA@SOI framework. It describes how to interact with the SLA@SOI framework through the Reference demonstrator UI and how to monitor various framework features.

Documents that are relevant to this guide are SLA@SOI Adoption Guide [2] which documents how to build and execute SLA@SOI framework for an arbitrary use case; SLA@SOI Tutorial [3] which documents how the SLA@SOI framework was applied for an Open Reference Case (ORC); Reference Architecture guide [4] which describes the architecture of the SLA@SOI framework; and ORC deployment guide [5].
Table of Contents

1 Introduction ... 6
2 Installation ... 7
 2.1 Workload Generator ... 7
 2.2 Open Reference Demonstrator GUI ... 7
3 How to start and use Open Reference Demonstrator Tools 9
 3.1 SLA@SOI Framework Setup ... 9
 3.2 Interaction with the SLA@SOI Framework via GUI .. 9
 3.2.1 Login Screen ... 9
 3.2.2 SLA Management ... 9
 3.2.3 Framework Overview .. 10
 3.3 Interaction with the Simulation Environment via Open Reference Demonstrator GUI ... 17
 3.4 Customization and further development ... 21
4 References .. 22
Appendix A: Glossary ... 23
Appendix B: Abbreviations ... 26

Table of Figures

Figure 1: Creating Release Build .. 8
Figure 2: Login Screen ... 9
Figure 3: User registration dialog .. 10
Figure 4: Navigation Bar ... 10
Figure 5: SLA Management .. 11
Figure 6: SLA Hierarchy ... 11
Figure 7: Create Agreement Step 1 (choosing a product) 12
Figure 8: Create Agreement Step 2 (choosing a SLA template) 12
Figure 9: Create Agreement Step 3 (renegotiation/create agreement) 13
Figure 10: Framework Overview ... 14
Figure 11: SLA Violations .. 15
Figure 12: Infrastructure Overview ... 16
Figure 13: Infrastructure node information popup window 17
Figure 14: Selecting Workload Generator ... 18
Figure 15: Configuring Workload Generator ... 18
Figure 16: Response Times .. 19
Figure 17: Arrival Rates ... 20
Figure 18: Workload Generator Status .. 20
1 Introduction

The purpose of the Reference demonstrator is to showcase the results of the scientific work performed on the Integrated European Research Project SLA@SOI.

The Reference demonstrator is based on Open Reference Case (ORC) - a reference application supporting the sales process in a retail-chain. ORC is implemented on top of legacy components and it was adapted to the service-oriented application. ORC was extended to support various deployment options and levels of separations as well as with additional software hooks that facilitated run-time monitoring and SLA-awareness of the application.

The Reference demonstrator is comprised of a graphical user interface that supports the interaction of the user with the SLA@SOI framework, of an ORC application, and of a workload generator that simulates the consumption of the ORC services. The GUI provides a view on a many aspects of the SLA@SOI framework, namely customer's perspectives (negotiation for the quality of ORC web services, re-negotiation, SLA warning, violations and penalties, status and state of the ORC services) and developer's perspectives (framework internal messages, SLA hierarchy, interaction between framework components).

As the Reference demonstrator is public and open source, the source code and documentation are publically available on ORD Source Forge [6].

This document provides detailed information about the steps needed to take in order to use Reference demonstrator.
2 Installation

2.1 Workload Generator

Pre-Requirements:

- Maven 3.0.* [7]

The source code of the Workload Generator is located in the following SVN repository location:

The `manager.properties` file in the `workload` directory contains message bus properties and must be updated for the Workload Generator to connect to the PubSub server the framework uses.

Workload Generator can then be compiled and executed by running the following commands from the `workload` directory:

mvn compile

mvn exec:java -Dexec.mainClass="org.slasoi.adhoc.workload.WorkloadGenerator"

2.2 Open Reference Demonstrator GUI

Pre-Requirements:

- Maven 3.0.* [7]
- Flex IDE (Flash Builder) [9]

The source code of the ORC web application is located in the following SVN repository location:

The ORC Web Application consists of two projects: a server-based Java web application and a browser-based frontend implemented in Adobe Flex [8] which are located in `orc` and `orc-gui` folders, respectively.

First the ORC Java web application must be deployed to a Java Servlet container such as Apache Tomcat [10]. The application’s `pom.xml` file already includes a plugin for deployment, though the URL must be updated to point to the server:

```xml
<groupId>org.codehaus.mojo</groupId>
<artifactId>tomcat-maven-plugin</artifactId>
<configuration>
  <url>http://172.16.117.118:8080/manager</url>
</configuration>
```

Note: if a Tomcat server is used then Maven’s settings file (`settings.xml`), which is usually located in `.m2` directory, must contain the user name and password of the user with manager privileges so that the deployment plugin is authorized:

```xml
<server>
  <id>tomcat</id>
  <username>manager-username</username>
  <password>manager-password</password>
</server>
```
To deploy the application run the following Maven command:

```
mvn clean compile war:war tomcat:deploy
```

After the deployment to a Java Servlet server the orc-gui project must be imported into Flex development environment and project server properties must be updated (in Flash Builder go to Project > Properties > Flex Server).

It might be necessary to update endpoint addresses the ORC application uses to communicate with the framework. Change the addresses in the properties file located on:

```
[Servlet Server’s directory containing web applications]/orc/WEB-INF/classes/config/framework.properties
```

The last step is to create a release build of the project. To do this in Flash Builder go to Project > Export Release Build (Figure 1).

Figure 1: Creating Release Build

Apache Tomcat contains a directory named `webapps` which resides in Tomcat’s installation directory by default. Once the project is uploaded to `webapps` directory it must be started by restarting the server or using Tomcat’s manager web interface.
3 How to start and use Open Reference Demonstrator Tools

3.1 SLA@SOI Framework Setup

SLA@SOI framework setup is documented in SLA@SOI Adoption Guide [2] which documents how to build and execute SLA@SOI framework for an arbitrary use case.

A detailed documentation on how SLA@SOI framework was applied for an Open Reference Case (ORC) is available within SLA@SOI Tutorial [3].

3.2 Interaction with the SLA@SOI Framework via GUI

3.2.1 Login Screen

Login screen (Figure 2) is the first screen the user interacts with. Registered users authenticate themselves against the user database by entering their username and password, while new users register by clicking the Register button which opens a registration dialog (Figure 3). The GUI communicates with Business Manager which is responsible for managing user data.

The Demo checkbox enables demo mode meaning the demonstrator doesn’t actually communicate with the framework but rather uses static mock data. This is used for demonstrational purposes when the framework is not available due to e.g. network connectivity issues.

![Figure 2: Login Screen](image-url)
3.2.2 **SLA Management**

After successful authentication/registration the GUI establishes a connection to the framework event bus and performs other initialization steps.

The GUI has a static header and a navigation bar (Figure 4) at the top to switch between different sections of the GUI. SLA Management (Figure 5) is the section the user lands on after the authentication. The other views of the GUI are Framework Overview and ORC Simulation.
SLA Management section shows a list of customer’s SLAs along with some SLA properties: Name, Template ID, SLA Hierarchy, Agreed At, Effective From, Effective Until and Status.

SLA Hierarchy column contains a View button which shows all SLAs associated to the agreement: Business SLA, Software SLA and Infrastructure SLA. Figure 6 shows contents of Business SLA of the particular agreement.

The user can create an agreement (new SLA) by clicking the Create Agreement button. This opens a wizard which guides the user through the SLA creation process.

SLA creation process consists of several steps. The first step is to choose a product from the list (Figure 7).
Figure 7: Create Agreement Step 1 (choosing a product)

The second step is to choose a SLA template from the list (Figure 8). When a template is chosen a list of agreement terms is shown and the user has an option to change the values by clicking the Value table cell in the Guaranteed States table. The table cell becomes editable thus allowing the user to change the value.

To see the textual representation of a SLA template, the user must click the View button in the SLA templates table.

Figure 8: Create Agreement Step 2 (choosing a SLA template)
Clicking the *Finish* button starts the negotiation process. The user can also go back to previous step to choose another product by clicking the *Previous* button or cancel agreement creation altogether by clicking the *Cancel* button.

After the framework finishes the negotiation, it returns a list of agreeable SLA templates. The user has an option to either change the values of the SLA template again and renegotiate or create an agreement based on the selected SLA template (Figure 9).

Figure 9: Create Agreement Step 3 (renegotiation/create agreement)

In the case of renegotiation the same window appears again after the user has clicked the *Renegotiate* button. This can be done several times until the customer is satisfied with the offer.

Clicking *Create Agreement* button is the last step of the agreement creation process. The framework creates an agreement (SLA) based on the selected SLA template, stores the SLA into the SLA registry and returns the SLA to the GUI which is added to the table in SLA Management section.

3.2.3 Framework Overview

The purpose of the Framework Overview section is to give feedback to the user about the framework in runtime (Figure 10).
Figure 10: Framework Overview

The view consists of framework components, each represented by its own icon, and a table of framework log messages. Each framework component sends log messages to the event bus to which ORC GUI is subscribed to. Upon receiving a log message, a popup notification showing the message is displayed next to the component and added to the log messages table. Messages are coloured based on the severity: green – OK, yellow – warning, red – error.

Some of the framework components in Framework Overview are clickable and a click reveals further information.

Clicking the Business Manager component opens Violations Overview which shows SLA violations and penalties (Figure 11).
Figure 11: SLA Violations

After service provisioning the monitoring of the service is established and any SLA violation is detected and reported. Violations Overview displays customer and provider obligated penalties along with violations history graphs.

Clicking the *Infrastructure Service Manager* component opens Infrastructure Overview section that gives detailed information about the infrastructure (Figure 12).
Figure 12: Infrastructure Overview

Controls on the left side of the Infrastructure Overview are used to control the infrastructure graph: zooming, distance between the nodes, etc. By moving mouse pointer over any node in the infrastructure graph, a popup window containing detailed information of the node is shown (Figure 13). The nodes are organized in a hierarchical manner from cluster (top) to hosts (middle) and further down to virtual machines (bottom). Although the infrastructure graph gets updated automatically, it is possible to manually refresh the graph by right-clicking on infrastructure graph and selecting Synchronize from the context menu.
3.3 Interaction with the Simulation Environment via Open Reference Demonstrator GUI

ORC Simulation provides means to simulate a running Open Reference Case (ORC) application. This is done using a Java application named Workload generator that interacts with the provisioned services.

Upon opening ORC Simulation view a user must select a workload generator from the list of available Workload generators (Figure 14). If no Workload generators are running, one can be started by clicking the Remote Start button.
After Workload generator has been selected a screen for configuring is opened (Figure 15).

The first parameter is ORC Endpoint URI which gets automatically set upon agreement creation. It is an address that the Workload generator uses to invoke ORC methods through web services interface.

There are many parameters available to be set that affect how Workload generator interacts with the provisioned services. The ones that affect the arrival rate are under Simulation Delays and Deviations section. Instead of manually setting each parameter, Auto Adjust Delay slider can be used to automatically set simulation delay.
After the parameters have been set, the workload is configured by clicking the *Configure* button. The functionality behind Simulation Management buttons (Configure, Start, Stop, Pause, Resume) prevent the user from misusing the Workload Generator by automatically enabling and disabling the buttons. The simulation is started by pressing the *Start* button.

Once the simulation is running the framework’s monitoring service will begin reporting response times and arrival rates which are represented in *Response Times* (Figure 16) and *Arrival Rates* (Figure 17) graphs respectively.

![Figure 16: Response Times](image-url)
There are three graphs in each view, one for every service: Product Details, Payment and Book Sale service.

Both Response Times and Arrival Rates views share similar functionality. At the top there are two controls that affect how the data is represented in the graphs. Time Scale control is used to define a time scale of the data represented in the graphs. There are three options: All, Last 5 minutes and Last minute. Chart Type control is used to control whether the data is represented in a continuous (line chart) or discrete (column) manner.

The agreed-upon SLA contains agreement terms that define their violation threshold values. These thresholds are represented in graphs as horizontal red line. Whenever a threshold line has been crossed, a violation occurred and logged in Violations Overview section.

The last tab in ORC Simulation navigation bar is titled Status and is used to indicate whether Workload generator is alive or not (Figure 18).

Figure 17: Arrival Rates

Figure 18: Workload Generator Status
3.4 Customization and further development

In case that somebody would like to customize the framework and test it from the Reference demonstrator UI, the documentation about the SLA@SOI Studio [11] might be helpful. SLA@SOI Studio is an Eclipse based plugin, developed to simplify the SLA@SOI framework adoption for an arbitrary use case. It enables simple importing of the common SLA@SOI packages, their customization through the step-by-step guides, it enables SLA@SOI framework debugging, its configuration and execution. The Studio source code, as well as the documentation [11], can be found on Source Forge [12].
4 References

[1] Creative Commons Attribution 3.0 License. URL: http://creativecommons.org/licenses/by/3.0/
Appendix A: Glossary

The following list shows the most important entries of the SLA@SOI glossary. Note that terms that are specific for the current document and not part of the overall project wide glossary are marked with an asterix *.

Agreement Initiator
An agreement initiator is a party to a service level agreement. The initiator creates and manages an agreement on the availability of a service on behalf of either the service customer or service provider, depending on the domain-specific signalling requirements.

Agreement Offer
An offer is the description of the agreement relationship that is sent from agreement initiator to agreement responder during agreement creation, indicating the relationship which the initiator would like to form.

Agreement Responder
The agreement responder is a party to a service level agreement. The responder implements and exposes an agreement on behalf of either the service provider or service customer, depending on the domain-specific signalling requirements.

Agreement Template
An agreement template is an XML document used by the agreement responder to advertise the types of offers it is willing to accept.

Agreement Term
Agreement terms define the content of a service level agreement.

Business Service
A business service is exposed/invoked via at least some non IT elements.

Business Manager
A specialization of service provider: person that defines the SLATs of products and joins available services in a product.

External Service
External services are exposed across the boundaries of an organization, i.e. across at least two administrative domains.

Framework Administrator
A specialization of service provider: person that configures/adapts the SLA@SOI framework for a specific application.

Guarantee Term
Guarantee terms define the assurance on service quality associated with the service described by the service definition terms. They refer to the service description that is the subject of the agreement and define service level objectives, qualifying conditions and business value expressing the importance of the service level objectives.

Hybrid Service
A hybrid service is a set or bundle of other services where all these services are exposed to the customer
but have different service interface types (e.g. an IT service and a business service).

Infrastructure Manager
A specialization of *infrastructure provider*: person/system that is interested to measure and control infrastructure properties.

Infrastructure Provider
A specific kind of service provider that focuses on the provisioning of *infrastructure services*.

Infrastructure Service
An infrastructure service is a specific *IT service* which exposes resource/hardware-centric capabilities.

Internal Service
Internal services are exposed within the boundaries of an organization, i.e. within one administrative domain.

IT Service
An IT service is exposed/invoked by means of information technology. Specific classes of IT services may be software services, infrastructure services or media services.

Offered Service
An abstract service (more precisely: service type) which is offered by a specific *Service Provider* to its *Service Customers*.

Operation Level Agreements: A specification of the conditions under which an *internal service* or a component is to be used by its “customer”.

Service
A means of delivering value to customers by facilitating outcomes customers want to achieve without the ownership of specific costs and risks.
See also *service interface type*, *service concreteness*, *service exposure*

Service Concreteness
The stage a service reaches over time from a fully abstract type to actually instantiated.
See also *service type*, *offered service*, *service implementation*, *service instance*

Service Consumer
Person(s) who actually consume/use the provided services. Typically they belong to the *service customer*.

Service Customer
Someone (person or group) who orders/buys services and defines and agrees the service level targets.

Service Description Term
Service Description Terms describe the functionality that will be delivered under the *service level agreement*. The agreement description may include also other non-functional items referring to the service description terms.

Service Exposure
Services can be exposed either internally (within the same administrative domain) or externally.
See also *internal service*, *external service*

Service Implementation
A service implementation is a possible concrete realization of a given *service type*.

Service Instance
A concrete realization of an *offered service* which is ready for consumption by service users. It relies on the instantiations of all the resources required for a given *service implementation*.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Interface Type</td>
<td>Describes the nature of an actually exposed service, i.e., about the nature of his invocation interface. See also business service, IT service, hybrid service</td>
</tr>
<tr>
<td>Service Level Consequence</td>
<td>An action that takes place in the event that a service level objective is not met.</td>
</tr>
<tr>
<td>Service Level Agreement</td>
<td>An agreement defines a dynamically-established and dynamically managed relationship between parties. The object of this relationship is the delivery of a service by one of the parties within the context of the agreement. The management of this delivery is achieved by agreeing on the respective roles, rights and obligations of the parties. The agreement may specify not only functional properties for identification or creation of the service, but also non-functional properties of the service such as performance or availability. Entities can dynamically establish and manage agreements via Web service interfaces.</td>
</tr>
<tr>
<td>Service Level Objective</td>
<td>Service Level Objective represents the quality of service aspect of the agreement. Syntactically, it is an assertion over the agreement terms of the agreement as well as such qualities as date and time.</td>
</tr>
<tr>
<td>Service Provider</td>
<td>An organization supplying services to one or more internal customers or external customers.</td>
</tr>
<tr>
<td>SLA Manager</td>
<td>A specialization of service provider: person/system that is responsible for managing SLATs and SLA relationships.</td>
</tr>
<tr>
<td>Software Designer</td>
<td>A specialization of software provider: person that designs/develops the architecture and components of a specific SLA based application.</td>
</tr>
<tr>
<td>Software Manager</td>
<td>A specialization of service provider: person that defines software-based services, takes care of their management and supports the SLA manager in creating appropriate SLA templates.</td>
</tr>
<tr>
<td>Software Provider</td>
<td>An organization producing software components which might be used by a service provider to assemble actual services.</td>
</tr>
<tr>
<td>Software Service</td>
<td>A software service is a specific IT service which is exposed/invoked by means of software entities such as Web services, user interfaces, or software-based business processes.</td>
</tr>
<tr>
<td>Software Component</td>
<td>Software components are the entities produced at design-time by a software provider.</td>
</tr>
<tr>
<td>Service Type</td>
<td>A service type (or abstract service) specifies the external interface of a service possibly including non-functional aspects. It does not specify any means (components, resources) which are needed for the actual provisioning of that service.</td>
</tr>
</tbody>
</table>
Appendix B: Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOP</td>
<td>Aspect Oriented Programming</td>
</tr>
<tr>
<td>BM</td>
<td>Business Manager</td>
</tr>
<tr>
<td>B-SLAM</td>
<td>Business SLA Manager</td>
</tr>
<tr>
<td>EMF</td>
<td>Eclipse Modelling Framework</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>IE</td>
<td>Interaction Event</td>
</tr>
<tr>
<td>FCR</td>
<td>Finite capacity regions</td>
</tr>
<tr>
<td>ISLAM</td>
<td>Infrastructure SLA Manager</td>
</tr>
<tr>
<td>ISM</td>
<td>Infrastructure Service Manager</td>
</tr>
<tr>
<td>IoC</td>
<td>Inversion of Control</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>LLMS</td>
<td>Low Level Monitoring System</td>
</tr>
<tr>
<td>LQN</td>
<td>Layered Queueing Networks</td>
</tr>
<tr>
<td>MA</td>
<td>Manageability Agent</td>
</tr>
<tr>
<td>MRE</td>
<td>Monitoring Result Event</td>
</tr>
<tr>
<td>MVC</td>
<td>Model View Controller</td>
</tr>
<tr>
<td>NFP</td>
<td>Non-functional property</td>
</tr>
<tr>
<td>ORC</td>
<td>Open Reference Case</td>
</tr>
<tr>
<td>OVF</td>
<td>Open Virtualization Format</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>QPN</td>
<td>Queueing Petri Nets</td>
</tr>
<tr>
<td>PAC</td>
<td>Provisioning and Adjustment Component</td>
</tr>
<tr>
<td>POC</td>
<td>Planning and Optimization Component</td>
</tr>
<tr>
<td>POJO</td>
<td>Plain Old Java Objects</td>
</tr>
<tr>
<td>SaaS</td>
<td>Software as a Service</td>
</tr>
<tr>
<td>SE</td>
<td>Service Evaluation</td>
</tr>
<tr>
<td>SLA</td>
<td>Service Level Agreement</td>
</tr>
<tr>
<td>SLAM</td>
<td>SLA Manager</td>
</tr>
<tr>
<td>SLAT</td>
<td>Service Level Agreement Template</td>
</tr>
<tr>
<td>SM</td>
<td>Service Manager</td>
</tr>
<tr>
<td>SME</td>
<td>Small and Medium-sized Enterprise</td>
</tr>
<tr>
<td>SOA</td>
<td>Service Oriented Architecture</td>
</tr>
<tr>
<td>SW-SLAM</td>
<td>Software SLA Manager</td>
</tr>
<tr>
<td>SW-SM</td>
<td>Software Service Manager</td>
</tr>
<tr>
<td>TCO</td>
<td>Total Cost of Ownership</td>
</tr>
<tr>
<td>TOGAF</td>
<td>The Open Group Architecture Framework</td>
</tr>
</tbody>
</table>